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Abstract

Drug development is time-consuming and expensive. Repurposing existing

drugs for new therapies is an attractive solution that accelerates drug develop-

ment at reduced experimental costs, specifically for Coronavirus Disease 2019

(COVID-19), an infectious disease caused by severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2). However, comprehensively obtaining and pro-

ductively integrating available knowledge and big biomedical data to effec-

tively advance deep learning models is still challenging for drug repurposing in

other complex diseases. In this review, we introduce guidelines on how to uti-

lize deep learning methodologies and tools for drug repurposing. We first sum-

marized the commonly used bioinformatics and pharmacogenomics databases

for drug repurposing. Next, we discuss recently developed sequence-based and

graph-based representation approaches as well as state-of-the-art deep

learning-based methods. Finally, we present applications of drug repurposing

to fight the COVID-19 pandemic and outline its future challenges.
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1 | INTRODUCTION

The development of new drugs is time-consuming and costly. According to the Eastern Research Group (ERG),1 it usu-
ally takes 10–15 years and 0.8–1.5 billion dollars to develop a candidate drug, while the average success rate of develop-
ing a new molecular entity is only 2.01%.2 Effective identification of new indications from approved or well-established
clinical drugs play an essential part in drug discovery.3–6 Such a process is also known as drug repositioning or
reprofiling, and it can bypass many preapproval tests required for newly developed therapeutic compounds.7 In general,
drug repurposing offers a variety of advantages during the process of drug discovery, such as lower risk of failure, less
investment, and shorter development time frame.8,9

In drug repurposing pipelines, machine learning methods take advantage of manually constructed descriptors to
better predict the downstream tasks (e.g., molecular properties), which could identify possible candidates for subse-
quent clinical trials.10 However, since these methods can only handle fixed-size inputs, early on most machine learning
methods heavily depended on feature engineering11 and domain knowledge. More recently, there has been a steady
increase in the amount of available chemical and biomedical data in drug discovery and development. How to effec-
tively explore the large-scale domain data becomes a critical task in drug repurposing. On the other hand, deep learn-
ing12 has achieved remarkable success in a wide range of complex tasks, including natural language processing,13

speech recognition,14 and computer vision.15 Recently, deep learning methods have also started to be applied to drug
repurposing.16,17 Different from traditional machine learning techniques, the strength of deep learning lies in its ability
to learn complex relationships between input features and output decisions from large-scale data, helped by the contin-
uous increase of computing power from hardware equipment. In particular, deep learning methods can automatically
learn multiple levels of representations exclusively from its input data, without the need for additional user input.
Although their applications in drug repurposing are still in the infancy stage, they have already shown great potential
(Figure 1).

The past few years have seen a surge in drug repurposing research due to the unprecedented success of deep learn-
ing. Numerous methods, databases, and applications have been proposed in the literature, calling for a comprehensive
survey to focus the efforts in this flourishing new direction. While there have been several recent review articles focus-
ing on computational methods,9 they also cover machine learning and artificial intelligence (AI) algorithms,18 including
network-based approaches,19 as well as recently developed deep learning models.20 Some surveys of databases and other
resources supporting drug repurposing have also been conducted recently.21,22 Other comments and opinions empha-
size the drug design23, development process,24 and the calculation methods in the cancer research25 or COVID-19 drug

FIGURE 1 A diagram illustrating the workflow of drug repurposing using deep learning approaches. The entire deep learning-based

drug repurposing pipeline includes four steps: (1) create high-quality data sources among compounds, proteins, and diseases; (2) generate

informative feature vectors using various representation approaches (such as graphs, sequences, and text); (3) build and evaluate various

deep learning models; and (4) conduct drug repurposing tasks, including prediction of drug–target binding affinity of (DTA), drug–target
interaction (DTI), compound–protein interaction (CPI), and drug–disease associations
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repurposing.3 To the best of our knowledge, no review has yet summarized and integrated these methods from a gen-
eral point of view. Therefore, this review fills the gap by surveying drug repurposing approaches with a focus on recent
developments in representation methods and deep learning models. We first summarize the widely used databases
related to drug repurposing. Then we provide a brief overview of sequence-based and graph-based representation
methods, respectively. Moreover, we investigate two kinds of drug repurposing deep learning models, target-based and
disease-based. We also provide a comprehensive overview of several applications of drug repurposing techniques,
including Coronavirus Disease 2019 (COVID-19), an infectious disease caused by a toxic agent of severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2). Finally, we highlight the challenges facing future developments of deep
learning in drug repurposing.

2 | DATABASE

The explosive growth of large-scale genomic, phenotypic, and omics data, provides computational drug repurposing
approaches vast opportunities for the discovery of new candidate drugs.26 Available databases also include potential cel-
lular targets for different families of chemical compounds. For example, Kyoto Encyclopedia of Genes and Genomes
(KEGG)27 is an integrated database that contains large-scale molecular data sets from genes, proteins, biological path-
ways, and human diseases, which is used for better understanding of high-level functions and applications of the bio-
logical system. DrugBank28 is a comprehensive database that combines detailed drug information with the
corresponding drug targets. The latest released version, DrugBank (V5.1.7) consists of 13,791 drug entries, which con-
tain 2653 small molecule drugs approved by Food and Drug Administration (FDA). Pubchem29 is a database of chemi-
cal molecules and their activities against biological assays. It consists of three dynamically growing primary databases,
including 110 million compounds, 271 million substances, and 297 million bioactivities so far. Here, we provide a brief
summary of common databases involved in drug repurposing in Table 1.

As shown in Table 1, the databases covered in this review can be divided into four main categories, including chemical,
biomolecular, drug–target interaction, and disease databases. To better utilize these data, the primary consideration is to
focus on datasets that are publicly available online, where the associated data is either easy to download or easy to get access
to via an Application Programming Interface (API). This criterion is crucial as it allows data to be easily integrated into a
deep learning method. Then researchers should select the desired input from various data sources or cross-database compar-
ative analysis. For example, DrugBank provides the drug–target interaction data, which can be obtained by reading its
description and checking the data statistics, but it also provides clinical, drug classification, chemical structures, pathways,
and drug combination information. The more details of databases providing drug repositioning information can refer to
Tanoli et al.'s study.22 Actually, deep learning is well suited to integrate heterogeneous data sources. A recent study named
CDRscan57 was proposed to integrate with the genomic data from CCLE, drug response assay data from GDSC, virtual dock-
ing based on structural fingerprints, and quantitative structure–activity relationships (QSAR) information from DrugBank. It
can predict the anti-cancer activity from 1487 approved drugs, which results in 14 oncology and 23 non-oncology drugs hav-
ing new potential cancer indications. Additionally, considering more omics data can further create new opportunities for in
silico drug repositioning. AOPEDF58 was designed to collect physical drug–target interactions from DrugBank, TTD, and
PharmGKB, respectively, and to leverage the bioactivity data for drug–target pairs from ChEMBL and BindingDB, and to
extract the chemical structure of each drug with SMILES format from DrugBank. It cleaned up the data according to the
unique UniProt accession number and the threshold of binding affinity, to construct a heterogeneous network covering
chemical, genomic, and phenotypic data sources. A cascade deep forest classifier was built to infer new DTIs, which achieved
high accuracy on two external validation sets collected from DrugCentral and ChEMBL. In comparison to the methods that
rely on constructing the complex features by using matrix factorization or network modeling; herein, we only concentrate
on deep learning methods that depend on the raw data (i.e., SMILES for drug and protein sequence for target), which can
automatically extract the molecular features by designing the efficient representation learning (i.e., sequence-based and
graph-based methods).

3 | REPRESENTATION LEARNING

Inspired by the great success of deep learning in many scientific fields, including life science,59 researchers have become
increasingly interested in applying deep learning methods to computational drug repurposing, thereby saving time and

PAN ET AL. 3 of 21



TABLE 1 The widely used databases in drug repurposing

Database Describe URL References API

BindingDB A public database of protein-ligand binding affinities. http://www.bindingdb.org/
bind

30 *

CCLE Cancer Cell Line Encyclopedia (CCLE) is a large cancer cell
line collection that broadly captures the genomic diversity
of human cancers and provides valuable insight into anti-
cancer drug responses.

https://portals.broadinstitute.
org/ccle

31 NA

CellMinerCDB An interactive web application that simplifies the access
and exploration of cancer cell line pharmacogenomic data
across different sources.

https://discover.nci.nih.gov/
cellminercdb/

32 NA

ChEMBL A manually curated database of bioactive molecules with
drug-like properties. It brings together chemical,
bioactivity, and genomic data to aid the translation of
genomic information into effective new drugs.

https://www.ebi.ac.uk/
chembl/

33 *

ChemDB It provides chemical structures and molecular properties.
ChemDB also predicts 3D structures of molecules.

http://cdb.ics.uci.edu/ 34 NA

ChemicalChecker It provides processed, harmonized, and integrated
bioactivity data.

https://chemicalchecker.org/ 35 *

CGI Cancer Genome Interpreter (CGI) supports the
identification of tumor alterations that drive the disease
and flag those that may be therapeutically actionable.

https://www.
cancergenomeinterpreter.
org/

36 NA

CTD (Comparative
Toxicogenomics
Database)

Comparative Toxicogenomics Database (CTD) provides
manually curated information about chemical–gene or
protein interactions, chemical–disease, and gene–disease
relationships.

http://ctdbase.org/ 37 NA

DGIdb Drug–target interactions mined from >30 trusted sources,
including DrugBank, PharmGKB, Chembl, Drug Target
Commons, and Therapeutic Target Database.

http://www.dgidb.org/ 38 *

DisGeNET It is a discovery platform containing publicly available
collections of genes and variants associated with human
diseases.

http://www. disgenet.org/ 39 *

DrugBank It combines drug data (i.e., chemical, pharmacological and
pharmaceutical) information with drug target information
(i.e., sequence, structure, and pathway).

http://www.drugbank.ca 28 *

DrugCentral It provides information on active chemical entities and drug
modes of action.

http://drugcentral.org/ 40 *

DTC Drug Target Commons (DTC) manually curates bioactivity
data along with protein classification into superfamilies,
clinical phase, and adverse effects as well as disease
indications.

http://drugtargetcommons.
fimm.fi/

41 *

DTP Drug Target Profiler (DTP) contains drug target bioactivity
data and implements network visualizations. DTP also
contains cell-based response profiles of the drugs and
their clinical phase information.

http://drugtargetprofiler.
fimm.fi/

42 NA

GeneCards Automatically integrates gene-centric data from 150 web
sources, including genomic, transcriptomic, proteomic,
genetic, clinical, and functional information.

https://www.genecards.org/ 43 NA

GLIDA It contains drug–target interactions for G-protein-coupled
receptors (GPCRs).

http://pharminfo.pharm.
kyoto-u.ac.jp/services/
glida/

44 NA

GtopDB It contains quantitative bioactivity data for approved drugs
and investigational compounds.

http://www.
guidetopharmacology.org/

45 *
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cost. As a branch of machine learning, deep learning combines artificial neural networks with multiple layers of
nonlinear processing units to progressively extract high-level features from the raw input.12 In fact, the performance of
deep learning methods is largely reflected in the effective data representation, which means that a system can be
allowed to automatically discover the representations required for feature extraction or classification from raw data
using a set of techniques. Such a process is known as representation learning, and it is one of the fundamental steps in
end-to-end deep learning.60 Therefore, many efforts have been made to integrate deep learning methods into the design
of feature representations of the input data that make it easier to extract the useful information.61 Representation learn-
ing used in drug repurposing can be mainly categorized into sequence-based and graph-based methods, respectively.

TABLE 1 (Continued)

Database Describe URL References API

KEGG It is a knowledge base for systematic analysis of gene
functions, linking genomic information with higher order
functional information.

http://www.genome.jp/kegg 27 *

LINCS It contains details about the drug assays, cell types, and
perturbagens that are currently part of the library, as well
as software that can be used for analyzing the data.

http://www.lincsproject.org/
LINCS/

46 *

OMIM It is a comprehensive, authoritative compendium of human
genes and genetic phenotypes that is freely available and
updated daily. The full-text, referenced overviews in
OMIM contain information on all known Mendelian
disorders and over 16,000 genes, and it focuses on the
relationship between phenotype and genotype.

https://www.omim.org/ 47 *

PathBank PathBank is designed specifically to support pathway
elucidation and discovery in transcriptomics, proteomics,
metabolomics, and systems biology.

https://pathbank.org/ 48 NA

PathwayCommon Pathways including biochemical reactions, complex
assembly, and physical interactions involving proteins,
DNA, RNA, small molecules, and complexes.

http://www.
pathwaycommons.org/

49 *

PDSP Ki It contains bioactivity data in terms of ki especially for
GPCRs, ion channels, transporters, and enzymes.

https://pdspdb.unc.edu/
pdspWeb/

50 *

PharmGKB It contains comprehensive data on genetic variation on drug
response for clinicians and researchers.

https://www.pharmgkb.org/ 51 *

Probes & Drugs
Portal

A public resource joining together focused libraries of
bioactive compounds (e.g., probes, drugs, specific
inhibitor sets).

https://www.probesdrugs.org/
home/

52 NA

Pubchem It provides varieties of molecular information including the
chemical structure and physical properties, biological
activities, safety and toxicity information, patents,
literature citations, and so on.

https://pubchem.ncbi.nlm.
nih.gov/

29 *

STITCH It stores known and predicted interactions of chemicals and
proteins, and currently covers 9,643,763 proteins from
2031 organisms.

http://stitch.embl.de/ 53 *

Supertarget A data resource is used for analyzing drug–target
interactions and drug side effects.

http://bioinf-apache.charite.
de/supertarget/

54 NA

SwissTarget-
Prediction

It contains information on predicted targets of drugs based
on the similarity principle through reverse screening.

http://www.
swisstargetprediction.ch/

55 NA

TTD Therapeutic Target Database (TTD) provides information
about the known and explored therapeutic protein and
nucleic acid targets, the targeted disease, pathway
information, and the corresponding drugs directed at each
of these targets.

https://db.idrblab.org/ttd/ 56 NA

API, Application Programming Interface. *indicates that the dataset provides API. NA indicates that there is no API in the dataset.
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3.1 | Sequence-based representation

Sequence-based representation methods can partly overcome the limitations of available protein/target structural data
and the requirements of costly molecular docking simulation, while available biological data of protein and compound
sequences offer a possibility for the rapid advancement of drug repurposing. For molecular compounds, one critical
one-dimensional (1D) representation is SMILES (Simplified Molecular Input Line Entry System),62 a text notation for
the topological information based on chemical bonding rules (Figure 2a). In addition, chemical fingerprints, such as cir-
cular fingerprints,63 are a 2D representation of molecules, which recurrently search for the partial structures around
each atom, and then use a hash function to convert the molecule into a binary vector (Figure 2b). However, since the
generated vectors are not only high-dimensional and sparse, they might contain a “bit collisions” owing to the hashing
function. Recently, representation learning brought several breakthroughs in compound space. Specifically, Recurrent
Neural Network (RNN) and convolutional neural network (CNN) models are adopted to automatically learn latent fea-
tures from SMILES strings to achieve better performance.16,17 Inspired by the pretrained language model in Natural
Language Processing (NLP),64 Mol2vec65 was proposed and recognized as the most representative method that con-
siders molecular substructures as “words” and compounds as “sentences”, and generates the embedding of atom identi-
fiers by using Word2Vec.66 Although these methods achieve excellent performance, the obvious disadvantage of such
1D or 2D representation is that information about bond lengths and 3D conformation is lost, which may be important
for the binding detail of drug target. Therefore, the 3D representation will attract more attention in the future.

Similarly, protein sequences are generally composed of 20 standard amino acids, where each amino acid can be sim-
ply encoded by one-hot encoding (Figure 3a). Besides, proteins can also be represented with a two-dimensional (2D)
distance map (Figure 3b), which calculates the distance between all possible amino acid residue pairs in a three-
dimensional protein structure.68 Inspired by the embedding techniques of NLP, ProtVec,69 and doc2vec70 were further
developed to generate the non-overlapping 3-gram sub-sequences from protein sequences, and to pre-train their distrib-
uted representations based on a skip-gram model by using the word2vec technique. However, these models usually
focused on learning context-independent representations. Different from k-gram, a unified representation method71

was designed to apply RNN to learn statistical representations of proteins from unlabeled amino acid sequences, which

FIGURE 2 Drug representations. (a) One-hot representation67 of SMILES string. (b) Two-dimensional (2D) representation of molecular

graph where each substructure was associated with a predefined bit vector. (c) Graph neural network (GNN) was adopted to transfer a

molecular graph to a vector where the atoms and bonds were denoted by nodes and edges, respectively
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are semantically rich and structurally, evolutionarily, and biophysically grounded. Strodthoff et al.72 proposed a univer-
sal deep sequence model which was pretrained on unlabeled protein sequences and could be fine-tuned on downstream
classification tasks. However, the protein representations mentioned above use only the information provided by the
special order of the protein sequence consisting of 20 different characters, ignoring the physical, chemical, and biologi-
cal properties of the protein. Rifaioglu et al. proposed a new featurization method to represent protein sequences as dig-
ital matrices, based on their physical, chemical, and biological properties.73 Similar to compounds, the sequence-based
representation methods do not take into account more information about the three-dimensional structure of the pro-
tein. Last but not least, a deep learning system named AlphaFold,74 developed by Google DeepMind, has released the
predicted 3D structure of a protein based solely on its genetic sequence, which can take months by traditional experi-
mental approaches. More recently, DeepMind further released the source code of AlphaFold2,75 and then their
predicted 3D structures of human proteins are freely available to the community via a public database.76

3.2 | Network/graph-based representation learning

Recent advancements of multi-omics technologies and systems biology approaches have generated large-scale heteroge-
neous biological networks, which provide considerable opportunities for graph or network-based drug repurposing.77

Owing to the topological structure of the graph itself, and since a compound or a protein can be naturally encoded as a
graph or a network, including their chemical associations, graph-based representation approaches have increasingly
become an emerging solution to improve the performance in drug repurposing.

More recently, graph neural network (GNN)78 has been developed as the state-of-the-art method for graph related
tasks, such as node-level and graph-level classification.79,80 Its advantage is in automatically extracting the latent fea-
tures by considering the structure of neighboring nodes and aggregating the information among layers. SMILES string
can be easily transformed into a molecular graph by RDKit.81 For molecules, we can represent the atoms and bonds as
vertices connected by edges82 (Figure 2c). For proteins, a more natural way to represent a protein molecule is to encode
a protein graph with nodes representing the various constituent non-hydrogen atoms in the protein, a representation
whose construction is rotationally invariant. ProteinGCN83 effectively utilized both inter-atomic orientations and

FIGURE 3 Target representations. (a) One-hot representation of amino acids sequences. (b) Contact map was a kind of two-

dimensional (2D) representation of the protein. (c) Graph convolutional network was used to learn the representation of the three-

dimensional (3D) protein graph with nodes representing the various constituent non-hydrogen atoms
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distances, and also captured the local structural information through the graph convolution formulation (Figure 3c).
Compared to those GNNs that mainly retain first-order or second-order proximity, another promising technique,
named network embedding, is used to learn the global features. Specifically, it usually maps nodes, edges, and their fea-
tures to a vector, which maximally preserves global properties (e.g., structural information).84 Once the node represen-
tation is obtained, deep learning models can be applied to network-based tasks, including node classification,85 node
clustering,86 and link prediction.87 Another important graph-based deep learning method, called the probabilistic
graph, combines a variety of neural generative models, gradient-based optimization, and neural inference techniques.
Furthermore, variational autoencoders (VAE)88 trained on biological sequences have been shown to learn biologically
meaningful representations beneficial for various downstream tasks. In short, VAE is the variant of autoencoder that
provides a stochastic map between the input space and the latent space. This map is regularized during the training to
make sure that its latent space has the ability to generate some new data. An example of applying VAE in the protein
modeling field is learning a representation of bacterial luciferase.89 The resulting continuous real-valued representation
can then be used to generate novel, functional variants of the luxA bacterial luciferase.

4 | DEEP LEARNING MODELS FOR DRUG REPURPOSING

A drug-repurposing tool usually aims at predicting unknown drug–target or drug–disease interactions, which can be
either classified as “target-centered” or “disease-centered” methods, respectively. The target fishing strategy90 encoded
the chemical structure of drugs to screen targeted proteins, which provide the detailed poly-pharmacological interpreta-
tion. However, a single predicted target cannot fully describe the characteristics of the disease. Thus, effectively identify-
ing the associations between drugs and diseases becomes essential for understanding the underlying biological
mechanisms. Each approach presents the unique challenges of informatics, and this review focuses on the target-based
and disease-based deep learning methods for drug repurposing over the last few years, respectively. Table 2 listed the
summary of details for all selected methods.

4.1 | Target-centered models

Many deep learning methods have been exploited to find potential drug–target interactions based on molecular struc-
ture. Specifically, convolutional operations were used to perform on various lengths of amino acids sequences, and to
capture the local residue patterns of generalized protein classes that play a critical part in drug–target interaction (DTI)
prediction.92 In order to make full use of compound–protein interaction (CPI) data, a novel multi-channel PCM-based
DNN (Figure 4d) framework named MCPINN was proposed to predict DTIs.93 In particular, it utilized three modules
including feature extractor, end-to-end learner, and classifier. It took compound SMILES, ECFPs, and vectors embed-
ded by Mol2vec,65 as well as amino acid sequences embedded by ProtVec69 as the input.

Recently, there have been numerous methods encoding compounds as molecular graphs. Tsubaki et al.94 developed
a novel end-to-end approach for CPIs prediction, by combining a GNN for compounds and a CNN (Figure 4f) for pro-
teins, which could learn low-dimensional real-valued vector representations of molecular graphs and protein sequences.
Similarly, Gao et al.95 utilized LSTMs and GCN (Figure 4a) to project proteins and drug structures into dense vector
spaces, respectively, and a two-way attention mechanism96 was used to calculate how the pairs interact and thus enable
interpretability. However, sequence based CPIs models still have several limitations, such as splitting methods as well
as hidden ligand bias, which results in overestimated prediction performance.98 To address these limitations, a trans-
former architecture97 with a self-attention mechanism named TransformerCPI was proposed, in which GCNs were
employed to learn the representation of each atom, and proteins are transformed into sequential representations by
embedding.98 Compared with previous models, TransformerCPI achieved the best performance in more rigorous label
inversion experiments.

Network-based approaches have been adopted for target identification for known drugs to assist in countering side
effects and accelerate drug repurposing. For example, Luo et al.99 first followed an unsupervised approach to learn low-
dimensional vector representations of drugs and targets from heterogeneous networks, and then adopted inductive
matrix completion to predict novel DTIs. However, separating feature learning from a prediction task may not produce
an optimal solution. Subsequently, the same group further proposed a neural network-based DTI prediction method,
termed NeoDTI.100 NeoDTI integrated neighborhood information of nodes in the heterogeneous network and
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automatically learned topology-preserving representations of drugs and targets. However, these methods are prone to
preserving only the local proximity. Thus, deep autoencoder was adopted to automatically learn high-quality features
from heterogeneous networks, and Zeng et al.77 employed positive-unmarked matrix completion to predict new DTIs,
named deepDTnet, which integrates large biomedical network datasets for target identification and minimizes the

TABLE 2 Drug repurposing methods based on deep learning

Target-centered models

Model

Input

Network architecture Type YearProtein Compound

DeepAffintiy16 Protein SPS (Structural property
sequence)

SMILES RNN, CNN, Attention
Mechanism

DTA 2019

Rifaioglu et al.73 Protein sequence, structural,
evolutionary,
and physicochemical
properties

SMILES CNN DTA 2020

GraphDTA17 Protein sequence Molecular graph GCN, CNN DTA 2019

DeepConv-DTI92 Protein sequence Fingerprint CNN, DNN DTI 2019

MCPINN93 Amino acid sequence & ProtVec ECFP & Mol2Vec &
SMILES

DNN CPI 2019

Gao et al.95 Amino acid sequence Molecular graph GCN, LSTM, two-way
attention mechanism

DTI 2018

TransformerCPI98 Protein sequence Molecular graph Transformer CPI 2020

Tsubaki et al.94 Amino acid sequence Molecular graph GCN, CNN, attention
mechanism

CPI 2019

NeoDTI100 Eight individual drug or target related networks GCN DTI 2019

DeepDTnet77 15 types of chemical, genomic, phenotypic, and cellular
networks

Autoencoder DTI 2020

AOPEDF58 15 networks covering chemical, genomic, phenotypic, and
network profiles among drugs, proteins/targets, and
diseases.

Deep forest algorithm DTI 2020

Trimodel87 Biomedical knowledge graphs about drug and target Knowledge Graph
Embedding

DTI 2019

Disease-centered models

Input
Network architecture Type YearModel Drug and disease

SNF-
CVAE102

Drug-related similarity information,
Drug–disease associations

Similarity network fusion (SNF), collective
variational autoencoder (cVAE)

Drug–disease
association
prediction

2020

Xuan
et al.104

Drug network, disease network, drug–
disease associations

CNN, BiLSTM Drug–disease
association
prediction

2019

DeepDR105 Drug–disease, drug-side-effect, drug–
target, and seven drug–drug networks

Multimodal deep autoencoder (MDA),
Collective Variational Autoencoder (cVAE)

Drug–disease
association
prediction

2019

Wang
et al.106

Drug–protein, disease–protein, and PPIs Bipartite GCN Drug–disease
association
prediction

2020

Cov-
KGE108

Biomedical knowledge graphs Knowledge graph embedding Drug–disease
association
prediction

2020
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translational gap in drug development. The comparative experiments show that the proposed deepDTnet achieves a
high AUC-ROC metric of 0.963 in identifying novel molecular targets for known drugs, outperforming traditional
machine learning approaches, including random forest (0.911), SVM (0.869), k-nearest neighbors (0.839), and Naive
Bayes (0.783). Further, different from deepDTnet, a deep learning-based framework, named AOPEDF, an arbitrary-
order proximity embedded deep forest,58 was proposed to predict the DTIs. Specifically, it constructed 9 networks for
drugs, including clinically reported drug–drug interactions, to consider the complementary order proximity information
for different networks, and it also achieved higher performance with fewer hyperparameters. Additionally, it showcased
in a case study that multiple molecular targets predicted by AOPEDF are related to mechanism-of-action of substance
abuse disorder for several marketed drugs (e.g., aripiprazole, risperidone, and haloperidol), which were successfully
supported by experimental assays. It further analyzed the potential advantages through ablation experiments. Espe-
cially, it was replaced by LINE101 (i.e., LINE1st and LINE2nd) for feature extraction, and the designed deep forest classi-
fier was compared with the traditional methods equipped with the same features, including Support Vector Machine,
Random Forrest, and Deep Neural Network, where the results showed that the high-order proximities preserved by
AROPE may provide more effective information for classification, and deep forest classifier achieved the best perfor-
mance. The currently available knowledge bases were used to generate a knowledge graph (KG) of biological entities,
and a specific KG embedding model called Trimodel was employed to learn low-dimensional vector representations of
drugs and targets, respectively. Naturally, the DTIs prediction can also be modeled as link prediction in KG.87

Most of the studies mentioned above have focused on binary classification, where the goal was to determine
whether a drug–target pair interacts or not. While the protein–ligand interactions (PLIs) can predict a binding affinity
value, it's more challenging for drug repurposing. For example, with the novel representations of structurally annotated
protein sequences (SPS), Karimi et al. proposed a semi-supervised deep learning model called DeepAffinity.16

DeepAffinity unified RNN (Figure 4e) and CNN to jointly encode molecular representations, and predicted affinity
using both unlabeled and labeled data. What's more, DeepAffinity introduced some attention mechanisms96 to interpret
predictions by separating molecular fragments or their major contributors, which can be further applied to predict the
binding sites and sources of binding specificity. GraphDTA17 was also applied to predict DTA (drug target binding affin-
ity), but the difference was that GNN was used instead of CNN to learn the representation of the compound. However,
in the above methods, the physical, chemical, and biological properties of proteins are generally ignored. Therefore,
Rifaioglu et al.73 proposed a novel featurization approach for proteins, which integrated multiple types of protein

FIGURE 4 Architecture of deep-learning models. (a) Graph convolutional network (GCN). (b) Network embedding (NE) or knowledge

graph embedding model (KGE).91 (c) autoencoder (AE). (d) Fully connected deep neural network (DNN). (e) Recurrent neural network

(RNN). (f) Convolutional neural network (CNN)
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characteristics, such as sequence, structure, evolution, and physicochemical properties, into a two-dimensional vector,
and achieved significant improvements in terms of CPA (compound protein affinity) predictive performance.

4.2 | Disease-centered models

Identifying the interactions between drug–disease pairs becomes essential for disease-centered drug repurposing. Cur-
rently, existing methods can be roughly categorized into similarity-based and network-based approaches.

Previous methods have been proposed to calculate the similarity between drugs and diseases. The methods have
achieved certain success in computational drug repurposing, by combining drug or disease features with the known
drug–disease associations. For example, a robust approach termed SNF-CVAE102 was developed to predict novel drug–
disease interactions. Specifically, it integrated similarity measurement, similarity selection, similarity network fusion
(SNF), and collective variational automatic encoder (CVAE)103 for nonlinear analysis, which improved the accuracy of
drug–disease interaction prediction. Meanwhile, it displayed in two case studies that the top drug candidates predicted
by SNF-CVAE can potentially treat Alzheimer's disease and Juvenile rheumatoid arthritis, which were successfully vali-
dated by clinical trials and published studies. Furthermore, Xuan et al.104 proposed a novel method based on CNN and
bidirectional LSTM for drug repurposing, where the CNN-based module was used to learn the original representation
of drug–disease pairs from their similarities and associations; yet, the BiLSTM-based module was used to learn the path
representations of the drug–disease to balance the contributions of different paths by attention mechanism.

On the other hand, network-based approaches represent graph information among different biological networks to
boost the performance of drug repurposing. For example, Su et al.84 summarized the use of network embedding
(Figure 4b) methods in biomedical data and discussed a broad range of potential applications and limitations. Further-
more, a network-based deep-learning method, termed deepDR,105 was developed for in silico drug repurposing. Specifi-
cally, it firstly learned high-level features of drugs from 10 networks via a multi-modal deep autoencoder. Then
combined with the clinically reported drug–disease pairs, the learned drug representations were encoded and finally
decoded by a variational autoencoder (Figure 4c) to infer the candidates for approved drugs. Compared with conven-
tional network-based and machine learning-based approaches, including DTINet, KBMF, Random Forest, and Support
Vector Machine, the proposed deepDR achieved an AUROC score of 0.908 with 4.6% absolute gain compared to DTINet
(the second-best method). Importantly, it showcased that the top 20 candidates predicted by deepDR are approved for
the treatment of Alzheimer's disease (e.g., risperidone and aripiprazole) and Parkinson's disease (e.g., methylphenidate
and pergolide), most of them can be validated by previous literature. However, deepDR only considered information
sources in the drug domain rather than the interactions in the disease domain. Wang et al.106 assembled interactions
across protein, drug, and disease domains from large-scale databases, which provides insights into utilizing protein–
protein interactions (PPIs) for improved drug repurposing assessment. Specifically, a bipartite GCN-based method was
designed to merge with inter-domain information. Also, a biological system can be modeled by using heterogeneous
multi-relational networks (i.e., knowledge graphs). In another study, Mohamed et al.107 exclusively explored knowledge
graph embedding (KGE) models, focused on performing the best models in terms of both scalability and accuracy
across various biological tasks, and further discussed the opportunities and challenges of using KGE to model biological
systems. In detail, Zeng et al. built a comprehensive knowledge graph that includes entities of drugs, diseases, and pro-
teins/genes from a large scientific corpus of 24 million PubMed publications. A powerful Cov-KEG model was used to
quickly identify drugs that can be repurposed for the potential treatment of COVID-19.108 However, to a certain extent,
the potential noise from different data sources and the sparseness of the data will affect the performance of the knowl-
edge graph method.

4.3 | Model evaluation

Deep learning models are usually evaluated by cross-validation, which involves partitioning the original observation
dataset into a training set for model training, and an independent set used to evaluate the model performance. And, K-
fold cross-validation is the widely used cross-validation technique. Meanwhile, drug repurposing tasks are roughly
divided into two categories, including classification and regression. As for regression tasks, root mean squared error
(RMSE), mean absolute error (MSE), and the concordance index (CI) are adopted to access the model performance.
Specifically, MSE represents the sum of the absolute differences between predictions and actual values.17 And, RMSE
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measures the average magnitude of the error by taking the square root of the average of squared differences between
prediction and actual observation.73 On the other hand, CI measures the probability of two randomly selected
compound–target protein pairs with different binding affinity values to be in the correct order.73 As for classification
tasks, accuracy, the area under the receiver operating characteristic curve (AUC-ROC), the area under the precision-
recall curve (AUPR), and the F1-score are often used to evaluate the performance of the classifiers. Specifically, accu-
racy defines overall accuracy as the probability of correspondence between a positive decision and true condition.
AUC-ROC is a metric for measuring the ability of a binary classifier to discriminate between positive and negative clas-
ses.77 While especially for highly skewed data, AUC-ROC may be overly optimistic in evaluating the performance of
prediction algorithms, AUPR can provide a better assessment in this case. A PR curve shows the trade-off between pre-
cision and recall across different decision thresholds.77 And, F1-score is a measure of a test's accuracy. It is calculated
from the precision and recall of the test, where the precision is the number of true positive results divided by the num-
ber of all positive results, including those not identified correctly, and the recall is the number of true positive results
divided by the number of all samples that should have been identified as positive.102 On the other hand, there are sev-
eral systematic benchmarks and platforms to accelerate machine-learning model development, validation, and transi-
tion into biomedical and drug discovery. For example, a large-scale benchmark for molecular machine learning, named
MoleculeNet,109 was developed to provide high-quality open-source implementations of multiple previously proposed
molecular featurization and learning algorithms. Meanwhile, a comprehensive and easy-to-use deep learning library
was designed to predict the drug–target interaction (DTI), it supports the training of customized DTI prediction models
by implementing 15 compound and protein encoders and over 50 neural architectures, along with providing many
other useful features.110 More recently, the first unifying framework, named Therapeutics Data Commons (TDC),111

was released to systematically access and evaluate machine learning across the entire range of therapeutics.
In addition to computational evaluation discussed here, experimental validations or clinical validation for a short

list of high-confidence of predicted candidates. Commonly used experimental validation approaches include in vitro
models and in vivo animal models. For example, a team experimentally validated that deepDTnet predicted topotecan
(an approved topoisomerase inhibitor) is a new, direct inhibitor of human retinoic acid-receptor-related orphan
receptor-gamma t (ROR-γt). Subsequently, the same team showed that topotecan revealed a potential therapeutic effect
in a mouse model of multiple sclerosis by specifically targeting ROR-γt. A classic clinical validation approach is case–
control observational studies using electronic patient data generated from health insurance claims or electronic health
records. Using retrospective case–control observations with 7.2 million individuals, a team identified that usage of
fluticasone (an approved glucocorticoid receptor agonist) is significantly associated with a reduced incidence of
Alzheimer's disease.112 Using large healthcare databases with over 220 million patients and state-of-the-art
pharmacoepidemiologic analyses, another team identified that hydroxychloroquine (an approved immunosuppressive
drug) is associated with a decreased risk of coronary artery disease (CAD); furthermore, in vitro experiments show that
hydroxychloroquine attenuates pro-inflammatory cytokine-mediated activation in human aortic endothelial cells,
mechanistically supporting its potential beneficial effect.5 In summary, combining computational prediction and experi-
mental or clinical validation will offer actionable strategies to identify repurposable drug candidates to be tested in
patients directly.

5 | APPLICATIONS OF DRUG REPURPOSING

Due to many changes in traditional de novo drug discovery, drug repurposing has been demonstrated as a promising
strategy for drug discovery and development in a variety of human diseases, such as rare diseases,113–115 neurodegenera-
tive disease,112,116–119 cancer,25,120–122 and infectious disease.3,123,124 In this Review, we will use COVID-19, an infectious
disease caused by a toxic agent of SARS-CoV-2, as an example, to highlight how drug repurposing strategies accelerate
therapeutic development to fight the crisis of COVID-19 pandemic (Figure 5).

The ongoing global COVID-19 pandemic has led to more than 224 million confirmed cases and approximately 4 mil-
lion deaths worldwide as of September 13, 2021. There are no proven effective therapies for COVID-19 although there
are available vaccines. There is a critical, time-sensitive need to develop effective prevention and treatment strategies
for the COVID-19 pandemic, including drug repurposing strategies.3 For example, an autoencoder-based platform that
systematically integrates available transcriptomic, proteomic, and structural data was proposed.125 The authors
highlighted the importance of serine/threonine and tyrosine kinases as potential targets that intersect the SARS-CoV-2
and aging pathways and computationally prioritized several drug candidates (i.e., doxapram, dasatinib, and ribavirin)
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for old individuals with COVID-19.125 In addition to host-targeting therapies for COVID-19, antiviral drug repurposing
that specifically targets viral proteins of SARS-CoV-2 is also an attractive approach. For example, SARS-CoV-2 main
protease (Mpro) is one of the most favorable drug targets. A study integrates mathematics (i.e., algebraic topology) and
deep learning (termed MathDL) to provide a reliable ranking of the binding affinities of candidate inhibitors across
137 crystal structures of MPro.126 The team computationally identified 71 candidate covalent bonding inhibitors of
MPro of SARS-CoV-2 using MathDL.126 Another team proposed a neural network-based method, termed DeepCE in
which utilizes a graph neural network and multi-head attention mechanism96 to predict chemical substructure–gene
and gene–gene associations perturbed by compounds. The authors utilized a data augmentation method127 that extracts
useful information from unreliable experiments (i.e., Average Pearson Correlation [APC] score < 0.7) in the L1000
dataset and showed high performances of DeepCE compared to several state-of-the-art methods.128 The team further
applied DeepCE to drug repurposing of COVID-19 and computationally prioritized a set of candidate compounds con-
sistent with ongoing clinical evidences on COVID-19.128

Although these studies demonstrated the potential of deep learning approaches for possible identification of candi-
date repurposable drugs for COVID-19, including host-targeting therapies and antiviral treatments, some recent studies
also achieve comparative or even better performance than deep learning methods on the application with SARS-CoV-2,
by employing simpler strategies. For example, a web-based platform designed for SARS-CoV-2 virus–host interactome
exploration and drug–target identification, termed CoVex,129 was developed to implement systems medicine algorithms
for network-based prediction of drug candidates, and to mine the integrated virus–host–drug interactome for putative
drug targets and drug repurposing candidates. Meanwhile, a multimodal ensemble forecasting approach130 was pro-
posed to combine with artificial intelligence, network diffusion, and network proximity, and it experimentally screened
in human cells the top-ranked drugs, which finally identifies four drugs (digoxin, fluvastatin, azelastine, and auranofin)
that could be repurposed to potentially treat COVID-19. On the other hand, none of the predictions were validated by
preclinical models and clinical randomized controlled clinical trials. It should therefore be noted that all predicted can-
didate drugs must be validated using experimental assays and randomized clinical trials before they can be rec-
ommended for use in patients with COVID-19.

FIGURE 5 A diagram illustrating deep learning-based drug repurposing infrastructure for emerging development of host-targeting

therapies to fight COVID-19 and future pandemic. We posited that approved drugs that specific human proteins/targets may offer potential

host-targeting therapies for COVID-19 as COVID-19 may share biology with human cells and tissues from the SARS-CoV-2 virus–host
protein–protein interactome perspective3,4,6
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BOX 1 Terminology

Drug repurposing8: A strategy for identifying new therapies from approved or clinically investigational drugs
that have not been originally approved (also known as drug repositioning, re-tasking, or re-profiling).
Deep learning12: An artificial intelligence function that mimics the workings of the human brain in processing
unstructured data through many layers of neural networks.
Machine learning10: A branch of artificial intelligence in which a computer generates rules underlying or based
on raw data that has been fed into it.
Feature engineering11: Feature engineering is the process of using domain knowledge of the data to create fea-
tures that make machine learning algorithms work.
Representation learning60: Learning representations of the data that make it easier to extract useful information
when building classifiers or other predictors.
One-hot representation67: One-hot encoding is used to represent the categorical variables as binary vectors. Each
integer value is represented as a binary vector, except for the index of the integer marked by 1, all remaining
values are zero.
SMILES62: Simplified Molecular Input Line Entry System (SMILES) is a linear symbol for the input and repre-
sents the molecular reactions by ASCII encoding.
Natural language processing (NLP)64: NLP is to process, understand and use human language (e.g., Chinese and
English) by computers. It is a branch of artificial intelligence, an interdisciplinary discipline of computer sci-
ence and linguistics, and is often referred to as computational linguistics (also termed computational
linguistics).
Attention mechanism96: An information filtering or retrieval mechanism, similar to memory or gating, used to
filter, and update information.
Deep learning architecture: The fully connected deep neural network (DNN)12 is the most common deep learn-
ing model. A DNN contains multiple hidden layers and each layer comprises hundreds of nonlinear process
units. DNNs use multiple layers to progressively extract higher-level features from the raw input.

Convolutional neural network (CNN)15 is a feed-forward neural network, which usually contains several
convolution layers and subsampling layers. The parameters in convolution layers are composed of a set of filters
(kernels), and the main purpose is to extract different features of the input data. The subsampling (pooling)
layer is responsible for progressively reducing the spatial size of the features which decreases the number of
parameters and calculations.

Recurrent neural network (RNN)12 is a type of neural network where the output from the previous step is
fed as input to the current step. The main and most important feature of RNN is the hidden state, which
remembers some information about a sequence.

Graph convolutional network (GCN)83 is an approach for semi-supervised learning on graph-structured data.
The choice of convolutional architecture is motivated via a localized first-order approximation of spectral graph
convolutions.

Network embedding (NE)84 or knowledge graph embedding (KGE) also known as network representation
learning, aims to represent the nodes or links in a network in low-dimensional and dense vector form, so that it
can have the ability of representation and reasoning in vector space.

An autoencoder (AE)88 is an unsupervised learning technique for neural networks. Using backpropagation,
the unsupervised algorithm continuously trains itself by setting the target output values to equal the inputs.
This forces the smaller hidden encoding layer to use dimensional reduction to eliminate noise and reconstruct
the inputs.

Transformer96 is an architecture for transforming one sequence into another one with the help of two parts
(encoder and decoder). The encoder consists of a set of encoding layers that processes the input iteratively one
layer after another and the decoder consists of a set of decoding layers that does the same thing to the output of
the encoder.
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A novel method named Cov-KGE108 was proposed to develop an integrative and network-based deep learning meth-
odology. Resulting from a large scientific corpus of 24 million PubMed publications, the CoV-KGE was adopted to build
a comprehensive knowledge graph that includes 15 million edges across 39 types of relationships connecting drugs, dis-
eases, proteins/genes, pathways, and expressions. Using the ongoing COVID-19 trial data as a validation set, they dem-
onstrated that CoV-KGE had a high performance in identifying repurposable drugs for COVID-19. And, they identified
41 high-confidence repurposable drugs (including dexamethasone131 and melatonin) for COVID-19, which were vali-
dated by enrichment analysis of gene expression and proteomic data in SARS-CoV-2 infected human cells. Subse-
quently, the same team identified that melatonin usage is significantly associated with a 28% reduced likelihood of a
positive laboratory test result for SARS-CoV-2 confirmed by reverse transcription-polymerase chain reaction assay,
using a large COVID-19 registry database.4 Currently, there are at least 8 ongoing or pending clinical trials to test the
clinical effects of melatonin in the potential treatment of COVID-19 from the clinicaltrials.gov database (www.
clinicaltrials.gov). Combining computational strategies (including deep learning) and real-world patient data validation
will offer more promising candidate repurposable drugs to be tested in clinical trials shortly.3 Using BenevolentAI's
knowledge graph,132 baricitinib was identified as a candidate agent for possible treatment of COVID-19. Several Phase
II Randomized Double-Blind Trials of baricitinib or its combination therapy with available antiviral agents are under
investigation for COVID-19 patients (ClinicalTrials.gov identifier: NCT04373044 and NCT04401579). Recently, bari-
citinib was associated with reduced mortality in hospitalized adults with COVID-19 in a phase 3, double-blind, random-
ized, placebo-controlled trial,133 showing the first successful example of deep learning approaches for COVID-19 drug
repurposing development.

As COVID-19 patients flood hospitals worldwide, physicians are trying to search for effective antiviral therapies to
save lives. In summary, deep learning approaches offer promising strategies for the rapid development of effective ther-
apeutic interventions for the COVID-19 pandemic.133 Specifically, deep learning approaches can minimize the transla-
tional gap between preclinical testing results and clinical outcomes, which is a significant problem in the rapid
development of efficient treatment strategies for the emerging COVID-19 pandemic. From a translational perspective, if
broadly applied, the deep learning tools discussed here could prove helpful in developing effective treatment strategies
for other complex human diseases as well, including further pandemics and other emerging infectious diseases (Box 1).

6 | CONCLUDING REMARKS AND FUTURE CHALLENGES

Deep learning has been widely used as a useful tool in multiple biomedical research communities, including drug
repurposing. Different from physical models that depend on explicit physical equations, deep learning methods are
more efficient to handle big datasets without the need for extensive computational resources, via designing pattern rec-
ognition algorithms to map the mathematical relationships between empirical observations of small molecules. Deep
learning utilizes deep and specialized architectures to learn useful features from raw data. In comparison to traditional
machine learning methods that rely on molecular descriptors manually constructed by domain knowledge, deep learn-
ing can automatically learn from the simple input and extract the task-specific representations of chemical structures.
However, the limitations of deep learning methods lie in the requirement of large-scale, high-quality datasets for model
training and the interpretability for revealing the biological significance behind the prediction. Although traditional
machine learning methods can be used to solve the specific task well in some fields, with the explosive growth of data
and the successful landing of AlphaFold2,75 it is reasonable to believe that deep learning will bring the milestone to
drug repurposing in the near future.

A major challenge of deep learning methods for drug repurposing is the data quality. Deep learning methods require
large databases for model training. While biomedical data actually tends to be uncertain due to higher noise, incom-
pleteness, and inaccuracy. Moreover, manual annotation by experts is expensive, slow, and insufficient to fill the gap
between the well-labeled and unlabeled biological data. Therefore, the community effort may be a potential solution to
increase the reuse and extension of compound bioactivity data. For example, an open-data web platform, termed Drug
Target Commons,134 is developed to further extract higher value from the existing and newly generated compound-
protein profiling data. On the other hand, advanced deep learning algorithms specifically designed to handle such prob-
lems have gradually received much attention. For example, to handle relatively heterogeneous and scarce data, transfer
learning135 can learn a separate task from a small amount of data by using the generalizable knowledge that exist in
other related tasks, which has been successfully applied in drug discovery.136–138 Moreover, active learning has also
been successfully applied to drug discovery.139 Specifically, it iteratively queries the most important unlabeled samples,
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and then labels the samples for the next round of training to guide the improvement of the model. In addition,
semi-supervised few-shot learning with better generalization can learn the limited number of cancer genomic
data.140 Another trend is precision medicine drug repurposing. Large-scale omics data, including genetics, geno-
mics, transcriptomics, proteomics, and metabolomics, generated from cells or tissues from patient samples or dis-
ease models, will offer powerful data resources for patient stratification and to identify subtype-specific
repurposable drugs for precision medicine, using deep learning approaches.122,141 As in global emergencies like
the COVID-19 pandemic, accelerating the data sharing and collaboration of global communities will be beneficial
for future development in the field of deep learning-based drug repurposing. The challenges of many DREAM
communities have proved that the contribution of data usage sometimes outweighs the contribution of models in
terms of prediction accuracy.142 Overall, success in solving in silico drug repurposing challenges, depends on col-
laborative efforts among chemists, pharmacologists, data scientists, computer scientists, and drug discovery
experts in improving data quality and open data sharing. Without the high-quality data, even the most skilled
computer science teams cannot solve the challenge with cutting-edge methods.

The most important challenges of novel deep learning methods are still the interpretability, especially in drug
repurposing. Due to the complexity of the deep neural networks, it always suffers from providing the biological inter-
pretability for the drug discovery and development communities.143 In the field of bioinformatics and health-related, it
is of importance to assess the model performance and to better understand the underlying mechanisms by interpretabil-
ity.144 The design of subtle architectures must allow for interpreting or visualizing complex relationships, which are also
regarded as a challenge and opportunity for deep learning in drug repurposing. One potential direction is to adopt
attention mechanisms,96 where the model coefficients can infer the relative “importance” of each feature, and another
direction may be the visualization of the network or its internal mechanism to provide interpretability.145 Further
explorations are needed to transform the “black boxes” of deep learning into “white boxes” that can be explained from
a biological perspective meaningfully.

Deep learning is a promising wave for the upcoming big data-driven pharmaceutical research and drug discovery,
especially in drug repurposing. While the progress of deep learning in drug repurposing is accelerating, using deep
learning in clinical trials is yet to be demonstrated. People may ask: is deep learning superior to other machine learning
methods for drug repurposing? We believe it is still too early to draw any firm conclusion. For tasks with structured
input descriptors, deep learning seems to perform at least on a par with other methods. Thus, it is better not to put all
eggs in one basket. Instead, we need to fully investigate the advantages and limitations of deep learning techniques. In
practice, the method used in drug repurposing might depend on which method the modeler is most familiar with and
the specific problem being addressed.
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